Reddit Reddit reviews Fluid Mechanics with Student DVD (McGraw-Hill Series in Mechanical Engineering)

We found 3 Reddit comments about Fluid Mechanics with Student DVD (McGraw-Hill Series in Mechanical Engineering). Here are the top ones, ranked by their Reddit score.

Books
Engineering & Transportation
Engineering
Materials & Material Science
Materials Science
Fluid Mechanics with Student DVD (McGraw-Hill Series in Mechanical Engineering)
Check price on Amazon

3 Reddit comments about Fluid Mechanics with Student DVD (McGraw-Hill Series in Mechanical Engineering):

u/[deleted] · 12 pointsr/CFD

>I'm not sure what kinds of other heavy scientific computing you've done, but CFD is a very difficult field and takes years to understand.

CFD isn't this difficult.

On one side you have partial differential equations (PDEs) describing fluid flow. On the other side you have numerical methods used to solve those PDEs. Put the two together, implement it in code, and you get a rudimentary CFD simulation. For CS students, who typically already have knowledge of numerical methods, coding one of these basic simulations can be done within a semester's worth of focused effort. Venturing into finer, more complex domains and trying to model more advanced flow phenomenons do indeed require years of study, but a beginner -- a 3rd year CS undergrad of all people -- has no need to deal with that stuff when all they want to accomplish is to get their feet wet with the inner workings of the simplest CFD simulation.

So let's not intimidate the poor kid and not oversell the profession. A lot of people love pretending like this stuff is black magic, presumably because it promotes job security, but it just isn't. There are lots of people doing CFD that come from CS and Applied Math backgrounds instead of Engineering or Physics. They all started somewhere. So can the OP.

-------------------------------------

@ /u/AnotherBrownBike

Khan Academy Physics, Fluid Dynamics lectures are your best friend in this.

I would recommend that you start with getting a decent physical understanding of incompressible (also called divergence-free) advection-diffusion equation. This is a simple PDE that describes how particles (or other quantities like energy) are transferred inside a physical system due to the process of diffusion and advection (aka convection). Solving this equation using a numerical solution method for PDEs (such as finite volume or finite element) will allow you to practice the fundamental underpinnings of a CFD code.

Finite Volume methods are more popular in CFD than finite element methods, because they're mathematically easier for people who have a robust understanding of fluid mechanics. That's not going to be the case for you, because you're not studying fluids academically. I would recommend that you focus on finite element methods instead. These are mathematically more challenging -- using them with fluid PDEs require stabilization terms (like SUPG or GLS) to prevent the solution from oscillating. However, the application of finite element methods to fluid PDEs require essentially no knowledge of the physics behind the PDE. It's pure mathematics, and you as a CS student should be well equipped to handle this.

If you're not familiar with finite element methods for solving PDEs, I would strongly recommend starting with a Python library called FEniCS. This is a brilliant finite element solver that allows you to input the bilinear form of your partial differential equation (Google what "bilinear form" is for finite element methods) in Python and generate a solution. This will allow you to practice the mathematics of finite element methods without getting tangled up in the code implementation of the solution process. Solve the Poisson equation first, and then the advection-diffusion.

Simple solvers you might like working with:

EasyCFD -- Educational program intended to teach the basics of a "black-box" CFD solver.

CFD Python -- A Python program designed with a 12-step lesson plan to solving Navier-Stokes equations.

PyFR -- Another Python-based flow solver. Documentation is a bit sparse, so you need an understanding of how CFD works to use it. But once you have that, PyFR's open-source nature allows you to break apart an actual full CFD solver and look at its components before trying to write your own.

Useful literature you might want to check out from your campus library:

White, Fluid Mechanics and/or Cengel and Cimbala, Fluid Mechanics -- Basically the two beginner level fluid mechanics bibles, depending on who you ask. An overwhelming number of engineers out there have had one or the other as their textbook in school. They're both fantastic. Flip a coin.

Moin, Fundamentals of Engineering Numerical Analysis -- Yet another undergraduate bible, this time on numerical methods commonly used by engineers (of all types). It covers material so crucial in all scientific computing that one of my doctoral qualification examiners specifically requested that I know this book from cover to cover.

Anderson, Computational Fluid Dynamics -- Superb introductory book that covers most everything related to CFD. If you're going to buy anything in this list, buy this one.

Hughes, Finite Element Methods -- The bible on finite element methods. The book focuses on structural applications (which do not require stabilization terms) but the mathematics involved are identical regardless of the physics behind the PDE, so this is still a very useful reference.

Zienkiewicz, Taylor and Nithiarasu, Finite Element Method for Fluid Dynamics -- Great supplement to Hughes' book for anyone using FEM on fluid flow. Covers stabilized methods, starting with easy equations (like advection-diffusion) and scaling up all the way to turbulent flows (which you shouldn't bother with right now).

Anderson, Fundamentals of Aerodynamics -- Just putting this down in case you ever need to specifically learn about aerodynamic applications of fluid flow.

Anderson, Introduction to Flight -- Used nationwide as an introductory aerospace engineering book. I recommend it to everybody outside of the industry who wants to work/study in it. Superfluously covers every aspect of the discipline, from structures to propulsion, from aerodynamics to flight control, from aviation to space.

Panton, Incompressible Flow -- Often used as a graduate level book on theoretical fluid mechanics. Focused mathematical approach. Not an easy read, required some prerequisite knowledge of fluid flow (overview of the fundamentals is very brief), but it's the next logical step up when you're ready to take your fluid work further.

u/Elliott2 · 3 pointsr/MechanicalEngineering