Reddit Reddit reviews Introduction to Solid State Physics

We found 5 Reddit comments about Introduction to Solid State Physics. Here are the top ones, ranked by their Reddit score.

Science & Math
Books
Physics
Electromagnetism
Introduction to Solid State Physics
John Wiley Sons
Check price on Amazon

5 Reddit comments about Introduction to Solid State Physics:

u/dargscisyhp · 7 pointsr/AskScienceDiscussion

I'd like to give you my two cents as well on how to proceed here. If nothing else, this will be a second opinion. If I could redo my physics education, this is how I'd want it done.

If you are truly wanting to learn these fields in depth I cannot stress how important it is to actually work problems out of these books, not just read them. There is a certain understanding that comes from struggling with problems that you just can't get by reading the material. On that note, I would recommend getting the Schaum's outline to whatever subject you are studying if you can find one. They are great books with hundreds of solved problems and sample problems for you to try with the answers in the back. When you get to the point you can't find Schaums anymore, I would recommend getting as many solutions manuals as possible. The problems will get very tough, and it's nice to verify that you did the problem correctly or are on the right track, or even just look over solutions to problems you decide not to try.

Basics

I second Stewart's Calculus cover to cover (except the final chapter on differential equations) and Halliday, Resnick and Walker's Fundamentals of Physics. Not all sections from HRW are necessary, but be sure you have the fundamentals of mechanics, electromagnetism, optics, and thermal physics down at the level of HRW.

Once you're done with this move on to studying differential equations. Many physics theorems are stated in terms of differential equations so really getting the hang of these is key to moving on. Differential equations are often taught as two separate classes, one covering ordinary differential equations and one covering partial differential equations. In my opinion, a good introductory textbook to ODEs is one by Morris Tenenbaum and Harry Pollard. That said, there is another book by V. I. Arnold that I would recommend you get as well. The Arnold book may be a bit more mathematical than you are looking for, but it was written as an introductory text to ODEs and you will have a deeper understanding of ODEs after reading it than your typical introductory textbook. This deeper understanding will be useful if you delve into the nitty-gritty parts of classical mechanics. For partial differential equations I recommend the book by Haberman. It will give you a good understanding of different methods you can use to solve PDEs, and is very much geared towards problem-solving.

From there, I would get a decent book on Linear Algebra. I used the one by Leon. I can't guarantee that it's the best book out there, but I think it will get the job done.

This should cover most of the mathematical training you need to move onto the intermediate level physics textbooks. There will be some things that are missing, but those are usually covered explicitly in the intermediate texts that use them (i.e. the Delta function). Still, if you're looking for a good mathematical reference, my recommendation is Lua. It may be a good idea to go over some basic complex analysis from this book, though it is not necessary to move on.

Intermediate

At this stage you need to do intermediate level classical mechanics, electromagnetism, quantum mechanics, and thermal physics at the very least. For electromagnetism, Griffiths hands down. In my opinion, the best pedagogical book for intermediate classical mechanics is Fowles and Cassidy. Once you've read these two books you will have a much deeper understanding of the stuff you learned in HRW. When you're going through the mechanics book pay particular attention to generalized coordinates and Lagrangians. Those become pretty central later on. There is also a very old book by Robert Becker that I think is great. It's problems are tough, and it goes into concepts that aren't typically covered much in depth in other intermediate mechanics books such as statics. I don't think you'll find a torrent for this, but it is 5 bucks on Amazon. That said, I don't think Becker is necessary. For quantum, I cannot recommend Zettili highly enough. Get this book. Tons of worked out examples. In my opinion, Zettili is the best quantum book out there at this level. Finally for thermal physics I would use Mandl. This book is merely sufficient, but I don't know of a book that I liked better.

This is the bare minimum. However, if you find a particular subject interesting, delve into it at this point. If you want to learn Solid State physics there's Kittel. Want to do more Optics? How about Hecht. General relativity? Even that should be accessible with Schutz. Play around here before moving on. A lot of very fascinating things should be accessible to you, at least to a degree, at this point.

Advanced

Before moving on to physics, it is once again time to take up the mathematics. Pick up Arfken and Weber. It covers a great many topics. However, at times it is not the best pedagogical book so you may need some supplemental material on whatever it is you are studying. I would at least read the sections on coordinate transformations, vector analysis, tensors, complex analysis, Green's functions, and the various special functions. Some of this may be a bit of a review, but there are some things Arfken and Weber go into that I didn't see during my undergraduate education even with the topics that I was reviewing. Hell, it may be a good idea to go through the differential equations material in there as well. Again, you may need some supplemental material while doing this. For special functions, a great little book to go along with this is Lebedev.

Beyond this, I think every physicist at the bare minimum needs to take graduate level quantum mechanics, classical mechanics, electromagnetism, and statistical mechanics. For quantum, I recommend Cohen-Tannoudji. This is a great book. It's easy to understand, has many supplemental sections to help further your understanding, is pretty comprehensive, and has more worked examples than a vast majority of graduate text-books. That said, the problems in this book are LONG. Not horrendously hard, mind you, but they do take a long time.

Unfortunately, Cohen-Tannoudji is the only great graduate-level text I can think of. The textbooks in other subjects just don't measure up in my opinion. When you take Classical mechanics I would get Goldstein as a reference but a better book in my opinion is Jose/Saletan as it takes a geometrical approach to the subject from the very beginning. At some point I also think it's worth going through Arnold's treatise on Classical. It's very mathematical and very difficult, but I think once you make it through you will have as deep an understanding as you could hope for in the subject.

u/UnfixedAc0rn · 3 pointsr/physicsbooks

We used this: http://www.amazon.com/Introduction-Solid-Physics-Charles-Kittel/dp/047141526X (the older editions are dirt cheap). But I know a lot of people hate on it.

There was a thread discussing other options a while ago, I'll try to find it.

u/Mayotte · 3 pointsr/changemyview

Some textbooks are good, some are bad. I was once so furious with how bad my textbook was (https://www.amazon.com/Introduction-Solid-Physics-Charles-Kittel/dp/047141526X), that I collected a list of bad reviews to share with my professor. Read some of the reviews, it's cathartic.

Anyway, despite that experience I still think textbooks are good. They have always been my primary learning tool throughout school. Yes I've used the internet for help with specific problems and questions, but I don't think absorbing the core principles of subject works as well through the internet.

A good textbook is a highly polished document with information presented in an order that should allow for a natural progression. Most online sources of knowledge do not start "at the beginning" or reach "the end."

Also textbooks are self consistent, so you won't experience changes in notation from chapter to chapter, whereas if you skip from one yt vid to another you might suffer a delay due to the two creators using different approaches / notation.

u/xrelaht · 2 pointsr/AskScienceDiscussion

There are a lot of good suggestions in here, but I'm wondering if any of them are really applicable to what you want to do. An electrodynamics book like Griffiths will come at magnetism from the perspective of field and/or tensor mathematics. A solid state book like Kittel or Ashcroft and Mermin would come at it starting from a phenomenological perspective and moving into things like local moments and band structure. I'm guessing here, but it seems like what you want is more of an idea of the interaction of magnetism and materials or observable phenomena. Either of those approaches would get you there, but it wouldn't be the most direct approach and it would be a lot more work than you need to put in if that's all you want. They would also both require a lot more math than it seems like you're really comfortable with, and both topics are complex enough that physics/chemistry/MSE students struggle with them without good instructors (and sometimes even with them).

Instead of starting with any of those, I'd suggest you look at some lower level, phenomenology and observation based works. Nicola Spaldin's Magnetic Materials: Fundamentals and Applications might be a good place to start. It's pretty low level: I think a motivated undergrad could deal with it after taking a year of freshman physics, but I think that's what you want, at least to start with. It gives a good overview of different kinds of magnetism and the different kinds of magnetic materials, as well as field generation and detection.

Incidentally, if you decide to be a masochist and go with a solid state book, I think Ashcroft & Mermin is a better text than Kittel. Kittel spent 50 years and eight editions trying to fit the new developments in the field into the book without making it significantly thicker, so Ashcroft has a narrower scope but covers what it does have in more depth. I find the writing style clearer and more accessible as well.

u/Mr_Pickle · 0 pointsr/buildapc

I don't know how you're this uninformed. Read both these books and tell me which one is harder.