Reddit Reddit reviews Modern Quantum Mechanics (2nd Edition)

We found 5 Reddit comments about Modern Quantum Mechanics (2nd Edition). Here are the top ones, ranked by their Reddit score.

Science & Math
Books
Physics
Quantum Theory
Modern Quantum Mechanics (2nd Edition)
Used Book in Good Condition
Check price on Amazon

5 Reddit comments about Modern Quantum Mechanics (2nd Edition):

u/BugeyeContinuum · 10 pointsr/askscience

Griffiths > Eisberg > Sakurai > Zee > Peskin

Peres and Ballentine offer a more quantum information oriented approach, read em after Griffiths.

Shankar before Sakurai, after Griffiths.



In that order. Your best bet though, is to find the appropriate section in the nearest university library, spend a day or two looking at books and choose whatever looks most interesting/accessible. Be warned, it seems that everyone and their cat has a book published on quantum mechanics with funky diagrams on the cover these days. A lot of them are legitimate, but make little to no effort to ensure your understanding or pose creative problems.

u/lejaylejay · 5 pointsr/quantum

What's your background? I'd probably start with math (sorry). Calculus and linear algebra.

Then Griffiths is probably to go-to intro text book. Though I never really got it until I read Sakurai. I'm not sure where to go for calculus and linear algebra self-study. Perhaps others can suggest.


http://www.amazon.com/Introduction-Quantum-Mechanics-2nd-Edition/dp/0131118927


http://www.amazon.com/Modern-Quantum-Mechanics-2nd-Edition/dp/0805382917

u/The_MPC · 2 pointsr/Physics

That's perfect then, don't let me stop you :). When you're ready for the real stuff, the standard books on quantum mechanics are (in roughly increasing order of sophistication)

  • Griffiths (the standard first course, and maybe the best one)
  • Cohen-Tannoudji (another good one, similar to Griffiths and a bit more thorough)
  • Shankar (sometimes used as a first course, sometimes used as graduate text; unless you are really good at linear algebra, you'd get more out of starting with the first two books instead of Shankar)

    By the time you get to Shankar, you'll also need some classical mechanics. The best text, especially for self-learning, is [Taylor's Classical Mechanics.] (http://www.amazon.com/Classical-Mechanics-John-R-Taylor/dp/189138922X/ref=sr_1_1?s=books&ie=UTF8&qid=1372650839&sr=1-1&keywords=classical+mechanics)


    Those books will technically have all the math you need to solve the end-of-chapter problems, but a proper source will make your life easier and your understanding better. It's enough to use any one of

  • Paul's Free Online Notes (the stuff after calculus, but without some of the specialized ways physicists use the material)
  • Boas (the standard, focuses on problem-solving recipes)
  • Nearing (very similar to Boas, but free and online!)
  • Little Hassani (Boas done right, with all the recipes plus real explanations of the math behind them; after my math methods class taught from Boas, I immediately sold Boas and bought this with no regrets)

    When you have a good handle on that, and you really want to learn the language used by researchers like Dr. Greene, check out

  • Sakurai (the standard graduate QM book; any of the other three QM texts will prepare you for this one, and this one will prepare you for your PhD qualifying exams)
  • Big Hassani(this isn't just the tools used in theoretical physics, it's the content of mathematical physics. This is one of two math-for-physics books that I keep at my desk when I do my research, and the other is Little Hassani)
  • Peskin and Schroeder (the standard book on quantum field theory, the relativistic quantum theory of particles and fields; either Sakurai or Shankar will prepare you for this)

    Aside from the above, the most relevant free online sources at this level are

  • Khan Academy
  • Leonard Susskind's Modern Physics lectures
  • MIT's Open CourseWare
u/mlmayo · 2 pointsr/askscience

>spin is just some fundamental quality that's tacked onto particles

You make it sound like spin was just invented willy nilly. For the sake of explanation, spin is an experimentally motivated quantity. See the Stern–Gerlach_experiment. For those interested, a very good pedagogical survey of the subject is given in the first chapter of Sakurai's book.