Reddit Reddit reviews Partial Differential Equations: An Introduction

We found 5 Reddit comments about Partial Differential Equations: An Introduction. Here are the top ones, ranked by their Reddit score.

Science & Math
Books
Mathematics
Differential Equations
Applied Mathematics
Partial Differential Equations: An Introduction
Check price on Amazon

5 Reddit comments about Partial Differential Equations: An Introduction:

u/-____--__________--- · 10 pointsr/math

Ordinary Differential Equations and Dynamical Systems by Gerald Teschl is a really good intro to ODE theory on the first-year graduate level. It also has the benefit of being freely available online. At the undergrad level, I haven't used this book personally but Differential Equations, Dynamical Systems, & and Introduction to Chaos by Hirsch, Smale, and Devaney seems to be a common choice.

For PDE, there are lots of standard texts that don't take the "toolbox" approach: at the undergrad level you have Walter Strauss, and at the begininning graduate level you've got Evans and Folland. For a slightly more advanced treatment, I like John Hunter's PDE notes, also free online.

Prerequisites: you should have a firm grasp of introductory analysis, say at the level of Baby Rudin, before diving into either of these subjects. You should also know your undergraduate linear algebra well.

u/BallsJunior · 1 pointr/learnmath

To piggy back off of danielsmw's answer...

> Fourier analysis is used in pretty much every single branch of physics ever, seriously.

I would phrase this as, "partial differential equations (PDE) are used in pretty much every single branch of physics," and Fourier analysis helps solve and analyze PDEs. For instance, it explains how the heat equation works by damping higher frequencies more quickly than the lower frequencies in the temperature profile. In fact Fourier invented his techniques for exactly this reason. It also explains the uncertainty principle in quantum mechanics. I would say that the subject is most developed in this area (but maybe that's because I know most about this area). Any basic PDE book will describe how to use Fourier analysis to solve linear constant coefficient problems on the real line or an interval. In fact many calculus textbooks have a chapter on this topic. Or you could Google "fourier analysis PDE". An undergraduate level PDE course may use Strauss' textbook whereas for an introductory graduate course I used Folland's book which covers Sobolev spaces.

If you wanted to study Fourier analysis without applying it to PDEs, I would suggest Stein and Shakarchi or Grafakos' two volume set. Stein's book is approachable, though you may want to read his real analysis text simultaneously. The second book is more heavy-duty. Stein shows a lot of the connections to complex analysis, i.e. the Paley-Wiener theorems.

A field not covered by danielsmw is that of electrical engineering/signal processing. Whereas in PDEs we're attempting to solve an equation using Fourier analysis, here the focus is on modifying a signal. Think about the equalizer on a stereo. How does your computer take the stream of numbers representing the sound and remove or dampen high frequencies? Digital signal processing tells us how to decompose the sound using Fourier analysis, modify the frequencies and re-synthesize the result. These techniques can be applied to images or, with a change of perspective, can be used in data analysis. We're on a computer so we want to do things quickly which leads to the Fast Fourier Transform. You can understand this topic without knowing any calculus/analysis but simply through linear algebra. You can find an approachable treatment in Strang's textbook.

If you know some abstract algebra, topology and analysis, you can study Pontryagin duality as danielsmw notes. Sometimes this field is called abstract harmonic analysis, where the word abstract means we're no longer discussing the real line or an interval but any locally compact abelian group. An introductory reference here would be Katznelson. If you drop the word abelian, this leads to representation theory. To understand this, you really need to learn your abstract/linear algebra.

Random links which may spark your interest:

u/98710throwaway · 1 pointr/math
u/[deleted] · 1 pointr/math

Strauss is commonly used in upper level undergrad courses.

u/a_bourne · 1 pointr/Physics

I used Strauss for my intro to PDEs course. It starts from the basics and builds up theory and application. There are a few chapters on applications in physics, and if I remember correctly there are a few sections on E/M.