(Part 2) Top products from r/AskPhysics

Jump to the top 20

We found 42 product mentions on r/AskPhysics. We ranked the 266 resulting products by number of redditors who mentioned them. Here are the products ranked 21-40. You can also go back to the previous section.

Next page

Top comments that mention products on r/AskPhysics:

u/MahatmaGandalf · 5 pointsr/AskPhysics

There are a lot of good classics on /u/thebenson's list. I want to highlight the books that are good for what you'll be learning, and give you a sense of how the sequence works. And I'll add a few.


Calculus books:
Thomas' Calculus, Calculus by James Stewart (not multivariable), and this cheap easy read by Morris Kline.

Have you learned calculus in the past? It sounds like you'll need it for at least one of those courses, but either way, it will definitely help you conceptually for the others. You should really try to get solid on this before you need to use it.



Intro physics books: Fundamentals of Physics (Halliday & Resnick), Physics for Scientists and Engineers (Serway & Jewett), Physics for Scientists and Engineers (Tipler & Mosca), University Physics (Young), and Physics for Scientists and Engineers (Knight) are all good. Gee, they get really unoriginal with the names, huh?

Each of these books assumes no background in physics, but you do need to use calculus. If you're going to take a class in basic mechanics that doesn't involve any calculus, you may find it more useful to get a book at that level. The only such book that I'm familiar with is Physics: Principles with Applications by Giancoli. I know there are many others, but I can't speak for them.



Mathematical methods: Greenberg is way more than you need here. I think you would find
Engineering Mathematics by Stroud & Booth more useful as a reference, since it covers a lot of the less advanced stuff that you may need a refresher on.



Sequence: it's typical to start learning physics by learning about Newtonian mechanics, with or without calculus. After that, one often goes on to thermodynamics or to electricity and magnetism. It sounds like this is roughly how your program is going to work.

If you are learning mechanics with calculus, you can expect E&M to be even heavier on the calculus and thermodynamics to be less so. More calculus is not a bad thing. People often get scared of it, but it actually makes things easier to understand.

It is very typical that you will use only one book (from the intro books above) for all of these topics. You shouldn't need to get any books on specific topics.

**

The other books on /u/thebenson's list are all great textbooks, but I think you should avoid them for now. They generally assume a healthy background in basic physics, and they may not be very relevant to the physics you'll be studying.

But I do want to give some mention to
Spacetime Physics* by Taylor and Wheeler, since I don't want to imply that this is a background-heavy book. On the contrary, this is one of the most beginner-friendly physics books ever written, and it is my favorite introduction to special relativity. Special relativity is probably not something you need to learn about right now, but if you have any interest, I seriously recommend finding an old used copy of this book—it's a fun read aside from any other uses!

u/HQuez · 2 pointsr/AskPhysics

For math you're going to need to know calculus, differential equations (partial and ordinary), and linear algebra.

For calculus, you're going to start with learning about differentiating and limits and whatnot. Then you're going to learn about integrating and series. Series is going to seem a little useless at first, but make sure you don't just skim it, because it becomes very important for physics. Once you learn integration, and integration techniques, you're going to want to go learn multi-variable calculus and vector calculus. Personally, this was the hardest thing for me to learn and I still have problems with it.

While you're learning calculus you can do some lower level physics. I personally liked Halliday, Resnik, and Walker, but I've also heard Giancoli is good. These will give you the basic, idealized world physics understandings, and not too much calculus is involved. You will go through mechanics, electromagnetism, thermodynamics, and "modern physics". You're going to go through these subjects again, but don't skip this part of the process, as you will need the grounding for later.

So, now you have the first two years of a physics degree done, it's time for the big boy stuff (that is the thing that separates the physicists from the engineers). You could get a differential equations and linear algebra books, and I highly suggest you do, but you could skip that and learn it from a physics reference book. Boaz will teach you the linear and the diffe q's you will need to know, along with almost every other post-calculus class math concept you will need for physics. I've also heard that Arfken, Weber, and Harris is a good reference book, but I have personally never used it, and I dont' know if it teaches linear and diffe q's. These are pretty much must-haves though, as they go through things like fourier series and calculus of variations (and a lot of other techniques), which are extremely important to know for what is about to come to you in the next paragraph.

Now that you have a solid mathematical basis, you can get deeper into what you learned in Halliday, Resnik, and Walker, or Giancoli, or whatever you used to get you basis down. You're going to do mechanics, E&M, Thermodynamis/Statistical Analysis, and quantum mechanics again! (yippee). These books will go way deeper into theses subjects, and need a lot more rigorous math. They take that you already know the lower-division stuff for granted, so they don't really teach those all that much. They're tough, very tough. Obvioulsy there are other texts you can go to, but these are the one I am most familiar with.

A few notes. These are just the core classes, anybody going through a physics program will also do labs, research, programming, astro, chemistry, biology, engineering, advanced math, and/or a variety of different things to supplement their degree. There a very few physicists that I know who took the exact same route/class.

These books all have practice problems. Do them. You don't learn physics by reading, you learn by doing. You don't have to do every problem, but you should do a fair amount. This means the theory questions and the math heavy questions. Your theory means nothing without the math to back it up.

Lastly, physics is very demanding. In my experience, most physics students have to pretty much dedicate almost all their time to the craft. This is with instructors, ta's, and tutors helping us along the way. When I say all their time, I mean up until at least midnight (often later) studying/doing work. I commend you on wanting to self-teach yourself, but if you want to learn physics, get into a classroom at your local junior college and start there (I think you'll need a half year of calculus though before you can start doing physics). Some of the concepts are hard (very hard) to understand properly, and the internet stops being very useful very quickly. Having an expert to guide you helps a lot.

Good luck on your journey!

u/CapNMcKickAss · 2 pointsr/AskPhysics

There's a lot of fun and interesting physics and astronomy that can be understood with little more than solid algebra skills. Add a little bit of introductory calculus, and there's a lot to keep you busy. If you're brave enough to dive into calc, I recommend this book.

Since you expressed particular interest in Astronomy, I would suggest using that as an anchor point. Get a good Astrophysics text like An Introduction to Modern Astrophysics by Carroll and start there. Inevitably, you will come upon concepts that you're shaky on-- luckily this is the age of the internet! I find HyperPhysics is a great resource (which appears to be down at the moment).

If you find that Newtonian physics is tripping you up, I recommend Basic Physics: A Self-Teaching Guide to fill in the gaps.

u/tikael · 1 pointr/AskPhysics

What level E&M? If it is intro physics 2 then look for AP physics B/C stuff in addition to what you would normally look for since that's the same level.

If it is an upper division E&M class then I will recommend a book you can probably find in most of your professors offices somewhere: Div, Grad, Curl, and All That. Older editions are much cheaper even and archive.org has a PDf of the 3rd edition. I have no idea what the differences are, but I have the 4th and it is just great.

I have yet to find an E&M textbook I like. Griffiths is alright and when paired with Div, Grad, Curl and maybe a Schaum's outline on E&M it forms what I think should just be one textbook.

As for online resources I think The Mechanical Universe about Maxwell does a great job at covering Maxwell's laws, especially the bit starting around 15 minutes in

I've never used this site but it looks like it has a bunch of solved problems as well.

u/anunknind · 1 pointr/AskPhysics

Thanks for clearing that up. I never really thought about the method these books use to educate students.

I've read some of Feynman's work before, and I like his writing style. So I think I could understand his lectures, even if they aren't the most modern method of teaching. That being said, I replied to InfanticideAquifer's wall of text with a little anecdote about what I've experienced with a more "group-friendly" approach to teaching physics. My junior-year physics teacher didn't believe in text books, so he taught us with labs. It didn't work very well because of the type of students in the class. I didn't like not having a textbook-based cirriculum, so my teacher let me borrow this book. It was pretty good. It's next year's AP book, so I'm happy about that. It includes Gauss' law, E&M, quantum, circular, etc. I have a man-crush on Gauss.

Sorry, it's late and I'm getting side-tracked.

I think I'll buy the Feynman lectures now and invest in the book InfanticideAquifer recommeded for when I start college. He and you gave some reasons why it may be a better way of learning.

u/lettuce_field_theory · 1 pointr/AskPhysics


>and the uncertainty principal imposes limits on what we can know through measurement.

Not what we can know, but that a particle's state at any time isn't given by a precise position and momentum (state of a classical particle). This sort of information doesn't exist. Instead the state of the particle is a wave function. The wave function gives probabilities to measure the particle to be in a certain position or alternatively to have a certain momentum. The probabilities for the two quantities are dependent on each other (via fourier transform). The uncertainty principle just says that any wave function can't both be precisely localised in momentum and position space. The best you can do is a bell shaped (gaussian) distribution in both position and momentum that have some nonzero width.

After measurement of position the particle is then in an eigenstate of definite position. That kind of state gives a uniform probability distribution for the momentum measurement (ie all momenta are equally likely, momentum can be anything if you measure that afterwards).

>In doing so, we are assuming space is a continuous object, there are particles in space that occupy a single point, and once measured, a particle has a well defined location even if we cannot entirely know that location.

In that instance we have just measured it so we do know it.

>If we still assume space is continuous but particles had some size and shape which is able to move in a non-uniform manner (different parts moving in different speeds or directions)

We can detect internal structure of particles in experiments. This is how we know the from is fundamental and the proton isn't. There's no evidence otherwise (though having an internal structure doesn't change much for the proton, it's also a quantum object) and there is no incentive of getting rid of what you call "weirdness", on the contrary, quantum theory gives the most accurate predictions we've ever had.

Describing the state of a particle by a wave function psi(t) instead of a pair of values (x(t), p(t)) is a more accurate description.

Your suggestion is literally choosing something that disagrees with experiments over something that agrees with them.

>our inability to measure its position could be related to how we try and collapse this into a single positional value. Or, what if particles are just bigger than what we would expect and in doing a measurement, we are only seeing a given piece a particle?

I agree with /u/cantgetno197 (who isn't a troll, he just told you something that's accurate but you didn't want to hear). I think your view might have to do with not knowing quantum theory very well yet. In that case I would be trying to learn about it (textbooks), not trying to get rid of it. https://www.amazon.com/Introduction-Quantum-Mechanics-David-Griffiths/dp/1107179866

Yes books do teach you. They teach you intuition too, contrary to what you say (again you haven't read any quantum theory books but have already an opinion). How is anyone supposed to take someone saying he is learning seriously if he is dismissive of reading educational material?

>Besides, those who don't ask questions generally don't understand as well as they think, or they are unimaginative...

Those who don't read books are worse off, they don't ask very useful questions to begin with and don't make progress.

u/mofo69extreme · 2 pointsr/AskPhysics

Most of the topics you mentioned were what I would call algebra or single-variable calculus. I would start learning some linear algebra and multivariable/vector calculus first - the latter should be available in any good calculus text anyways. Besides these, you should at least know some basic probability and maybe a little about complex numbers. With this amount of math you could probably get through most of a "basic" physics degree, but you'll probably want to learn much more math if that's what you're into.

Many people on Reddit have glowing reviews for Boas' mathematical physics text (haven't read it myself though). Looking at the table of contents, I think it's a good overview of topics useful for an undergrad curriculum.

u/isentr0pic · 2 pointsr/AskPhysics

Interdisciplinary connections spring up from generality. You'd be hard pressed to find a spontaneous connection between something like particle phenomenology and an unrelated field.

To illustrate this idea of generality, consider the methods of statistical mechanics, which are so general that they can be used to describe everything from black holes to ferromagnets. However, the methods have also been used to model neural networks and social dynamics (the latter being accurate enough to successfully recreate historical events.)

What makes statistical mechanics more general than other branches? Probably the fact that it's almost more mathematics than physics, specifically a branch of probability theory regarding highly correlated random variables.

With this in mind, perhaps you'd benefit from focusing your attention on the mathematical ideas that drive physics rather than physics itself. Take the calculus of variations which, whilst developed for problems in classical mechanics, has found applications in mathematical optimisation. Another example being brownian motion, the mathematics of which have been generalised to higher dimensions and applied to finance. The mathematics behind relativity is differential geometry, which has been applied to too many fields to list.

I'd recommend having a look at Mathematical Methods for Physicists by Arfken, Weber and Harris for a broad overview of the methods.

u/CommonIon · 2 pointsr/AskPhysics

Most physics undergrads take a class called "Mathematics for Physics" or something similar which uses a book like this. It will help you cut to the chase and is a good reference for the math you haven't studied in detail.

As for where you are right now, you should be okay with ODE, multivariable/vector calc, and linear algebra. Those you probably want to devote considerable time learning.

u/South_Dakota_Boy · 2 pointsr/AskPhysics

Griffiths Electrodynamics would be a good thing to look at. It's surprisingly readable, and it could possibly wind up being your E&M textbook. In my undergrad, E&M was the "weed out" course, where those who weren't up to scratch lost interest in the physics degree, so it's good to get a head start. I wish I had started on it sooner. Maybe I'd have gotten more out of E&M as an undergrad and then Jackson in grad school wouldn't have been so hard.

u/FoolishChemist · 1 pointr/AskPhysics

I haven't read this, but this is from the Kip Thorns, the science adviser on the film

http://www.amazon.com/The-Science-Interstellar-Kip-Thorne/dp/0393351378

Also if it is half as good as his previous book, you're in for a treat

www.amazon.com/Black-Holes-Time-Warps-Commonwealth/dp/0393312763/

u/The_Artful_Dodger_ · 5 pointsr/AskPhysics

The textbooks recommended in the intro Astronomy class here are An Introduction to Modern Astrophysics by Carroll & Ostlie and Foundations of Astrophysics. I've never read through either, but apparently the first one is much more detailed.

The older edition of Modern Astrophysics is significantly cheaper and will fit your purposes just as well: 1st Edition Carroll

u/Lord_Blackthorn · 2 pointsr/AskPhysics

Sounds more like thermal/statistical physics than semiconductor physics honestly.

A good book for Statistical/Thermal Physics with problems worked out is: Fundamentals of Statistical and Thermal Physics by F. Reif

A good Book for more semiconductor problems is:
Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications by V. Mitin

u/HollowImage · 2 pointsr/AskPhysics

Moreover, special relativity is just within the minkowski metric and assuming no gravity.

But connection of mass and energy, as OniLinkMinus pointed out, is just a corollary.

if you can, read http://www.amazon.com/Black-Holes-Time-Warps-Commonwealth/dp/0393312763/ref=sr_1_2?s=books&ie=UTF8&qid=1373498223&sr=1-2

its in between Carrol's Spacetime and Geometry and Greene's popularized science books in terms of accesibility and accuracy. I think this will explain a lot.

u/razzafrazzin · 1 pointr/AskPhysics

How to Teach Relativity to Your Dog is a good one that explains the concepts by less abstract analogies. You might like it: http://www.amazon.com/How-Teach-Relativity-Your-Dog/dp/0465023312

u/starkeffect · 1 pointr/AskPhysics

You should probably start by cracking open a copy of a good E&M book, like this one, and learning the science, rather than relying on Einstein quotations.

Of course, that assumes you've already learned integral and differential calculus (which any 19-year-old science or engineering student has).

u/doinitlivetil35 · 1 pointr/AskPhysics

I hadn't taken a math class in over 5 years when I enrolled in Calc I. This book https://www.amazon.com/gp/aw/d/0471827223/ref=mp_s_a_1_1?ie=UTF8&qid=1524052149&sr=8-1&pi=AC_SX236_SY340_FMwebp_QL65&keywords=quick+calculus was a perfect precursor for the class if you're pressed for time.

u/McVomit · 3 pointsr/AskPhysics

The book is Mr. Tompkins in Wonderland.

If I had to make my own suggestion for a book, it would be How to Teach Relativity to Your Dog. Each chapter starts off as a conversation between the author and his dog, where the dog has heard some random fact about physics and is trying to exploit it for her own gains(catching squirrels, infinite bacon, etc..). Then the second part of each chapter is a more rigorous(but still easy to follow) mathematical explanation.

u/SoSweetAndTasty · 1 pointr/AskPhysics

Books like Griffiths quantum or Nielsen and Chuang quantum information? From the sounds of your post you have some large gaps in your understanding.

u/John_Hasler · 1 pointr/AskPhysics

> Special relativity in a single reddit comment? That doesn't work.

Sure it does:

https://www.amazon.com/Special-Relativity-M-I-T-Introductory-Physics/dp/0393097935

u/fulis · 1 pointr/AskPhysics

A good, fairly self contained book on QM, is the one by Shankar. This is a textbook intended for serious study, but it also introduces most of the math it uses. That is not a substitute for studying the math separately, but might do in a pinch.

u/GibletJuice · 2 pointsr/AskPhysics

See if you can find this in a bookshop or library, it is a more readable, introductory level text:

Have a look at reviews here (ignore the silly price):
http://www.amazon.com/Quantum-Physics-Molecules-Solids-Particles/dp/047187373X/ref=sr_1_1?s=books&ie=UTF8&qid=1373928683&sr=1-1

This seemed to be cheapest available copy here:
http://www.abebooks.com/servlet/BookDetailsPL?bi=10592106949

I haven't read Feynman's books, so can't can't comment on that.

u/totallynotshilling · 2 pointsr/AskPhysics

Haven't used it myself, but you might want to check out Div,Grad,Curl by Schey.

u/relax_its_fine · 8 pointsr/AskPhysics

Read the QED lectures by Feynman, you won't get a better, more accessible explanation than that

u/cailien · 1 pointr/AskPhysics

My undergraduate GR course used Spacetime and Geometry by Sean Carroll, which has a discussion of gravitational lensing in section 8.6. The problem is that the discussion there is built on the rest of the book, which is on the mathematically rigorous side of things. Also, it is kind of expensive, but you might be able to find it in a library.

u/xrelaht · 5 pointsr/AskPhysics

This should keep you busy, but I can suggest books in other areas if you want.

Math books:
Algebra: http://www.amazon.com/Algebra-I-M-Gelfand/dp/0817636773/ref=sr_1_1?ie=UTF8&s=books&qid=1251516690&sr=8
Calc: http://www.amazon.com/Calculus-4th-Michael-Spivak/dp/0914098918/ref=sr_1_1?s=books&ie=UTF8&qid=1356152827&sr=1-1&keywords=spivak+calculus
Calc: http://www.amazon.com/Linear-Algebra-Dover-Books-Mathematics/dp/048663518X
Linear algebra: http://www.amazon.com/Linear-Algebra-Modern-Introduction-CD-ROM/dp/0534998453/ref=sr_1_4?ie=UTF8&s=books&qid=1255703167&sr=8-4
Linear algebra: http://www.amazon.com/Linear-Algebra-Dover-Mathematics-ebook/dp/B00A73IXRC/ref=zg_bs_158739011_2

Beginning physics:
http://www.amazon.com/Feynman-Lectures-Physics-boxed-set/dp/0465023827

Advanced stuff, if you make it through the beginning books:
E&M: http://www.amazon.com/Introduction-Electrodynamics-Edition-David-Griffiths/dp/0321856562/ref=sr_1_1?ie=UTF8&qid=1375653392&sr=8-1&keywords=griffiths+electrodynamics
Mechanics: http://www.amazon.com/Classical-Dynamics-Particles-Systems-Thornton/dp/0534408966/ref=sr_1_1?ie=UTF8&qid=1375653415&sr=8-1&keywords=marion+thornton
Quantum: http://www.amazon.com/Principles-Quantum-Mechanics-2nd-Edition/dp/0306447908/ref=sr_1_1?ie=UTF8&qid=1375653438&sr=8-1&keywords=shankar

Cosmology -- these are both low level and low math, and you can probably handle them now:
http://www.amazon.com/Spacetime-Physics-Edwin-F-Taylor/dp/0716723271
http://www.amazon.com/The-First-Three-Minutes-Universe/dp/0465024378/ref=sr_1_1?ie=UTF8&qid=1356155850&sr=8-1&keywords=the+first+three+minutes