(Part 2) Best materials science books according to redditors

Jump to the top 20

We found 195 Reddit comments discussing the best materials science books. We ranked the 112 resulting products by number of redditors who mentioned them. Here are the products ranked 21-40. You can also go back to the previous section.

Next page

Subcategories:

Metallurgy books
Fracture mechanics books
Material extraction & processing books
Polymers & textiles books
Mechanics of materials engineering books
Material testing books
Concrete engineering books
Material science books

Top Reddit comments about Materials & Material Science:

u/pisosimple · 11 pointsr/CFD

If you're looking to get started, you should start with a good book like this one:
http://www.amazon.com/Computational-Fluid-Dynamics-John-Anderson/dp/0070016852

That book starts out with the basics of Fluid Dynamics equations and is really very good.

Turbulence theory and turbulence modeling is a pretty advanced topic. You will first have to learn about laminar boundary layers, boundary layer equations and then about transition to turbulence, turbulent boundary layers and turbulence modeling.

This is the best book I have read on Boundary Layer theory that covers both laminar and turbulent flow:
http://www.amazon.com/gp/aw/d/3540662707/ref=mp_s_a_1_1?qid=1425473580&sr=8-1&keywords=schlicting+boundary+layer&pi=AC_SY200_QL40&dpPl=1&dpID=41ZQZkmQBNL&ref=plSrch

Turbulence modeling is something you can move on to after that. I recommend this book:
http://www.amazon.com/gp/aw/d/1928729088/ref=mp_s_a_1_1?qid=1425473660&sr=8-1&keywords=wilcox+turbulence+modeling

Wilcox goes into much detail about the nature of turbulence and the different methods that have been formulated to model this phenomenon.

Here is a book that talks about the basics of fluid dynamics that is pretty good too:

http://www.amazon.com/gp/aw/d/0123821002/ref=mp_s_a_1_1?qid=1425473759&sr=8-1&keywords=kundu+fluid+mechanics&pi=AC_SY200_QL40&dpPl=1&dpID=41h-Ynv4uGL&ref=plSrch


Another great resource is this set of fluid dynamics videos made a few decades ago. They are awesome and will give you a strong conceptual understanding:
http://web.mit.edu/hml/ncfmf.html

There you go. I'm sorry if I was unclear on anything. Let me know about it and I'll be glad to help you out more.

Now could you point me to some material about how you use hydrodynamics in your field? I love to learn about different fields! Thank you in advance!

u/linehan23 · 10 pointsr/aerospace

/u/another_user_name posted this list a while back. Actual aerospace textbooks are towards the bottom but you'll need a working knowledge of the prereqs first.

Non-core/Pre-reqs:


Mathematics:


Calculus.


1-4) Calculus, Stewart -- This is a very common book and I felt it was ok, but there's mixed opinions about it. Try to get a cheap, used copy.

1-4) Calculus, A New Horizon, Anton -- This is highly valued by many people, but I haven't read it.

1-4) Essential Calculus With Applications, Silverman -- Dover book.

More discussion in this reddit thread.

Linear Algebra


3) Linear Algebra and Its Applications,Lay -- I had this one in school. I think it was decent.

3) Linear Algebra, Shilov -- Dover book.

Differential Equations


4) An Introduction to Ordinary Differential Equations, Coddington -- Dover book, highly reviewed on Amazon.

G) Partial Differential Equations, Evans

G) Partial Differential Equations For Scientists and Engineers, Farlow

More discussion here.

Numerical Analysis


5) Numerical Analysis, Burden and Faires


Chemistry:


  1. General Chemistry, Pauling is a good, low cost choice. I'm not sure what we used in school.

    Physics:


    2-4) Physics, Cutnel -- This was highly recommended, but I've not read it.

    Programming:


    Introductory Programming


    Programming is becoming unavoidable as an engineering skill. I think Python is a strong introductory language that's got a lot of uses in industry.

  2. Learning Python, Lutz

  3. Learn Python the Hard Way, Shaw -- Gaining popularity, also free online.

    Core Curriculum:


    Introduction:


  4. Introduction to Flight, Anderson

    Aerodynamics:


  5. Introduction to Fluid Mechanics, Fox, Pritchard McDonald

  6. Fundamentals of Aerodynamics, Anderson

  7. Theory of Wing Sections, Abbot and von Doenhoff -- Dover book, but very good for what it is.

  8. Aerodynamics for Engineers, Bertin and Cummings -- Didn't use this as the text (used Anderson instead) but it's got more on stuff like Vortex Lattice Methods.

  9. Modern Compressible Flow: With Historical Perspective, Anderson

  10. Computational Fluid Dynamics, Anderson

    Thermodynamics, Heat transfer and Propulsion:


  11. Introduction to Thermodynamics and Heat Transfer, Cengel

  12. Mechanics and Thermodynamics of Propulsion, Hill and Peterson

    Flight Mechanics, Stability and Control


    5+) Flight Stability and Automatic Control, Nelson

    5+)[Performance, Stability, Dynamics, and Control of Airplanes, Second Edition](http://www.amazon.com/Performance-Stability-Dynamics-Airplanes-Education/dp/1563475839/ref=sr_1_1?ie=UTF8&qid=1315534435&sr=8-1, Pamadi) -- I gather this is better than Nelson

  13. Airplane Aerodynamics and Performance, Roskam and Lan

    Engineering Mechanics and Structures:


    3-4) Engineering Mechanics: Statics and Dynamics, Hibbeler

  14. Mechanics of Materials, Hibbeler

  15. Mechanical Vibrations, Rao

  16. Practical Stress Analysis for Design Engineers: Design & Analysis of Aerospace Vehicle Structures, Flabel

    6-8) Analysis and Design of Flight Vehicle Structures, Bruhn -- A good reference, never really used it as a text.

  17. An Introduction to the Finite Element Method, Reddy

    G) Introduction to the Mechanics of a Continuous Medium, Malvern

    G) Fracture Mechanics, Anderson

    G) Mechanics of Composite Materials, Jones

    Electrical Engineering


  18. Electrical Engineering Principles and Applications, Hambley

    Design and Optimization


  19. Fundamentals of Aircraft and Airship Design, Nicolai and Carinchner

  20. Aircraft Design: A Conceptual Approach, Raymer

  21. Engineering Optimization: Theory and Practice, Rao

    Space Systems


  22. Fundamentals of Astrodynamics and Applications, Vallado

  23. Introduction to Space Dynamics, Thomson -- Dover book

  24. Orbital Mechanics, Prussing and Conway

  25. Fundamentals of Astrodynamics, Bate, Mueller and White

  26. Space Mission Analysis and Design, Wertz and Larson
u/ReconTiger · 7 pointsr/AskEngineers

Hertzberg is a great deformation and fracture book, definitely recommend owning this one.

Also, [Honeycombe and Bhadeshia] (http://www.amazon.com/gp/product/B000S1L6IQ/ref=pd_lpo_k2_dp_sr_1?pf_rd_p=1535523722&pf_rd_s=lpo-top-stripe-1&pf_rd_t=201&pf_rd_i=0750680849&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=1T4JXHZ7FKY6AGYPF3KH) have a great book on ferrous alloys. You should be able to find a pdf of this one, let me know if you can't.

As far as the others (online resources/organizations), I can't really comment... I just used these two textbooks in my grad-level fracture and ferrous alloys classes and quite enjoyed both books.

u/theholyraptor · 3 pointsr/AskEngineers

Further reading/research: (Not all of which I've gotten to read yet. Some of which may be quite tangentially relevant to the discussion at hand along with the books and sites I mentioned above. Consider this more a list of books pertaining to the history of technology, machining, metrology, some general science and good engineering texts.)

Dan Gelbart's Youtube Channel

Engineerguy's Youtube Channel

Nick Mueller's Youtube Channel

mrpete222/tubalcain's youtube channel

Tom Lipton (oxtools) Youtube Channel

Suburban Tool's Youtube Channel

NYCNC's Youtube Channel

Computer History Museum's Youtube Channel

History of Machine Tools, 1700-1910 by Steeds

Studies in the History of Machine Tools by Woodbury

A History of Machine Tools by Bradley

Tools for the Job: A History of Machine Tools to 1950 by The Science Museum

A History of Engineering Metrology by Hume

Tools and Machines by Barnard

The Testing of Machine Tools by Burley

Modern machine shop tools, their construction, operation and manipulation, including both hand and machine tools: a book of practical instruction by Humphrey & Dervoort

Machine-Shop Tools and Methods by Leonard

A Measure of All Things: The Story of Man and Measurement by Whitelaw

Handbook of Optical Metrology: Principles and Applications by Yoshizawa

Angle of Attack: Harrison Storms and the Race to the Moon by Gray

Machine Shop Training Course Vol 1 & 2 by Jones

A Century of Electrical Engineering and Computer Science at MIT, 1882-1982

Numerical Control: Making a New Technology by Reintjes

History of Strength of Materials by Timoshenko

Rust: The Longest War by Waldman

The Companion Reference Book on Dial and Test Indicators: Based on our popular website www.longislandindicator.com by Meyer

Optical Shop Testing by Malacara

Lost Moon: The Preilous Voyage of Apollo 13 by Lovell and Kruger

Kelly: More Than My Share of It All by Johnson & Smith

Skunk Works: A Personal Memoir of My Years at Lockheed by Rich & Janos

Unwritten Laws of Engineering by King

Advanced Machine Work by Smith

Accurate Tool Work by Goodrich

Optical Tooling, for Precise Manufacture and Alignment by Kissam

The Martian: A Novel by Weir

Roark's Formulas for Stress and Strain by Young Budynas & Sadegh

Materials Selection in Mechanical Design by Ashby

Slide Rule: The Autobiography of an Engineer by Shute

Cosmos by Sagan

Nuts, Bolts, Fasteners and Plumbing Handbook by Smith Carol Smith wrote a number of other great books such as Engineer to Win.

Tool & Cutter Sharpening by Hall

Handbook of Machine Tool Analysis by Marinescu, Ispas & Boboc

The Intel Trinity by Malone

Manufacturing Processes for Design Professionals by Thompson

A Handbook on Tool Room Grinding

Tolerance Design: A Handbook for Developing Optimal Specifications by Creveling

Inspection and Gaging by Kennedy

Precision Engineering by Evans

Procedures in Experimental Physics by Strong

Dick's Encyclopedia of Practical Receipts and Processes or How They Did it in the 1870's by Dick

Flextures: Elements of Elastic Mechanisms by Smith

Precision Engineering by Venkatesh & Izman

Metal Cutting Theory and Practice by Stephenson & Agapiou

American Lathe Builders, 1810-1910 by Cope As mentioned in the above post, Kennth Cope did a series of books on early machine tool builders. This is one of them.

Shop Theory by Henry Ford Trade Shop

Learning the lost Art of Hand Scraping: From Eight Classic Machine Shop Textbooks A small collection of articles combined in one small book. Lindsay Publications was a smallish company that would collect, reprint or combine public domain source material related to machining and sell them at reasonable prices. They retired a few years ago and sold what rights and materials they had to another company.

How Round Is Your Circle?: Where Engineering and Mathematics Meet by Bryant & Sangwin

Machining & CNC Technology by Fitzpatrick

CNC Programming Handbook by Smid

Machine Shop Practice Vol 1 & 2 by Moltrecht

The Elements of Computing Systems: Building a Modern Computer from First Principles A fantastic book with tons of free online material, labs, and courses built around it. This book could take a 6th grader interested in learning, and teach them the fundamentals from scratch to design a basic computer processor and programming a simple OS etc.

Bosch Automotive Handbook by Bosch

Trajectory Planning for Automatic Machines and Robots by Biagiotti & Melchiorri

The Finite Element Method: Its Basis and Fundamentals by Zhu, Zienkiewicz and Taylor

Practical Treatise on Milling and Milling Machines by Brown & Sharpe

Grinding Technology by Krar & Oswold

Principles of Precision Engineering by Nakazawa & Takeguchi

Foundations of Ultra-Precision Mechanism Design by Smith

I.C.S. Reference Library, Volume 50: Working Chilled Iron, Planer Work, Shaper and Slotter Work, Drilling and Boring, Milling-Machine Work, Gear Calculations, Gear Cutting

I. C. S. Reference Library, Volume 51: Grinding, Bench, Vise, and Floor Work, Erecting, Shop Hints, Toolmaking, Gauges and Gauge Making, Dies and Die Making, Jigs and Jig Making
and many more ICS books on various engineering, technical and non-technical topics.

American Machinists' Handbook and Dictionary of Shop Terms: A Reference Book of Machine-Shop and Drawing-Room Data, Methods and Definitions, Seventh Edition by Colvin & Stanley

Modern Metal Cutting: A Practical Handbook by Sandvik

Mechanical Behavior of Materials by Dowling

Engineering Design by Dieter and Schmidt

[Creative Design of Products and Systems by Saeed]()

English and American Tool Builders by Roe

Machine Design by Norton

Control Systems by Nise

That doesn't include some random books I've found when traveling and visiting used book stores. :)

u/dragoneye · 3 pointsr/engineering
  • Shigley's is my go to for any machine component calculations
  • Engineering Materials by Budinski is pretty good for material information and selection if you can get how full of themselves the authors are
  • BASF Design Solutions Guide (PDF link) is a pretty good resource on designing things like snaps, fits, ribs, etc. and other things related to injection molding design.
  • Machinery's Handbook is just incredibly useful for anything involving fits, threads, etc.
u/angrypom · 3 pointsr/civilengineering

Yeah, need some fun books rather than dry textbooks. J. E. Gordon's books [1] [2] are my favourite :)

u/k-selectride · 3 pointsr/Physics

I don't know of any decent online particle physics resources. But there are two good books at the undergraduate level I can think of Griffiths and Halzen and Martin

For superconductivity you want to learn many body quantum mechanics, ie non-relativistic quantum field theory. The most common recommendation is Fetter and Walecka, but I might consider Thouless to be superior on account of it being 1/3rd the length and probably only covers core topics. If you feel like dropping a lot of money, Mahan is very good, but also somewhat exhaustive. Might be worth having as a reference depending on how serious you get. I would get F&W and Thouless simply on account of how cheap they are.

u/MJ81 · 2 pointsr/Physics

I mostly learned from a variety of sources, as there's not an ideal single text on this avenue of research, IMO.

I found general small-angle scattering references for free here and here, the latter being a PDF document from the EMBL small-angle scattering group. For NSE experiments on these sorts of systems, it's pretty much expected you've already done characterization of your samples via small-angle x-ray and/or neutron scattering

I'd also recommend the NIST Summer School course materials as a good and inexpensive way to get started on the neutron spectroscopy side of things. Most of what I'd seen in terms of texts tended to be fairly pricey monographs when starting out, so I'd either borrow stuff from coworkers or my institutional library. There are advanced undergrad/starting grad student texts on x-ray & neutron scattering - e.g., 1 and 2 - but I didn't find out about them until a bit further into my studies.

As might be obvious, there's definitely inspiration and foundational work to be found in the polymer science literature. I went running to Doi and Edwards, for example, when I realized that I needed more background reading in this area, but I'm sure others have their particular favorites in this and related areas.

Insofar as the bio-side of things, well, I've been doing biophysically oriented research since I was an undergrad. I'd suggest a popular biophysics text as well (either Nelson's Biological Physics or Physical Biology of the Cell ) as a starting point/reference. These are aimed towards advanced undergraduates or new grad students as well, mostly due to the interdisciplinary nature of the topics. Speaking of PBoC, one of the authors maintains a publications page where you can check out the PDFs of his group's work.

I think I'll end there, as I think that should be enough pleasure reading for a little while, at least.

u/RustyShakleford81 · 2 pointsr/geology

https://www.amazon.com/Atlas-Alteration-Petrographic-Hydrothermal-Minerals/dp/0919216595

https://www.amazon.com/Ore-Textures-Interpretation-Roger-Taylor/dp/3642017827

These two are basically picture books with heaps of photos of altered rocks. Honestly though, recognising alteration is 90% experience, because your rocks will never look exactly like the photos. Everyone struggles a bit straight out of uni. Its harder now, but ideally move around a bit early in your career so you can see different rocks (and learn different ways of doing things).


https://www.amazon.com/Geology-Ore-Deposits-John-Guilbert/dp/1577664957

Guilbert & Park is good on alteration in terms of the minerals and chemical reactions involved, but its text with a few B&W diagrams.

u/Fatumsch · 1 pointr/metalworking

Check this book out. It has a ton of info on heat straightening. I love this book, a lot of decent fabrication tips in it.

u/TomatoAintAFruit · 1 pointr/Physics

For an undergraduate approach I recommend Schroeder. However, this book starts with thermal physics which is, well, a bit boring ;). The math is not hard, but developing that 'physics instinct' can sometimes be challenging.

For a more advanced, but very nice and systematic text, I recommend Toda, Kubo, et al.. Another graduate text is Huang.

There are also the books by Feynman and Landau and Lifshitz Pt. 1 (Pt. 2 is quantum field theory, which at this stage you probably will want to avoid).

u/qwerty222 · 1 pointr/askscience

The use of lasers in science and engineering are as varied as the types of lasers available today. Pulsed lasers can have pulse widths which vary from as long as 10s of milliseconds to as short as femtoseconds. A pulsed laser is the normal choice when studying a system where the physics or chemistry of interest requires a short interaction time with the surface of matter under study. For industrial processes, pulsed lasers will normally provide greater intensities but only for shorter pulse widths. That is useful for ablation processes in semiconductors. The Continuous Wave (CW) lasers, in contrast, provide power which can be spatially distributed by scanning the beam over a larger surface. Those systems are used in laser welding and laser-based additive manufacturing. Try looking at the diagram on page 6 of the book by Bauerle and you'll get a feeling for the full scope of laser processing of materials.

u/OoglieBooglie93 · 1 pointr/EngineeringStudents

Try the Dover reprint of Strength of Materials. https://www.amazon.com/Strength-Materials-Dover-Books-Physics-ebook/dp/B00A73AQAE/ref=sr_1_2?keywords=dover+strength+of+materials&qid=1551148311&s=gateway&sr=8-2-spell

It's old school, but I was using it to teach myself the stuff before taking the class, and it's cheap too!

u/OrbitalPete · 1 pointr/ScienceTeachers

There is no 'complete' text book on fluid mechanics; it's a massive area of study, and there are thousands of publications every year that move it forward.

I really think your best bet is to pick up an introductory book and go from there. Different sub fields and specialisms apply different areas of fluid mechanics in different ways. And don't forget that turbulence - which is a massive part of fluid mechanics - is still an unsolved problem. If you then start looking at complex materials like slurries, granular materials, and other 2-phase mixtures then you're getting into realms of really rather extraordinary complexity.

I find this to be a pretty good starting place (although I have the 4th edition - I haven't seen the 5th) : https://www.amazon.co.uk/Fluid-Mechanics-Pijush-K-Kundu/dp/0123821002/ref=sr_1_1?s=books&ie=UTF8&qid=1496312409&sr=1-1&keywords=kundu

u/AgAero · 1 pointr/math

That's where a course in dynamics comes into play. I cannot recommend this book enough when it comes to the subject of vectorial analysis of dynamics. Rao is extremely detailed and systematic throughout. By the end of the book you can prove things like the tennis racket theorem, or derive the equations of motion of complicated systems like this.

u/engineeringChaos · 1 pointr/videos

I was in this exact class, and you couldn't be more wrong. He writes all his own exams, draws all the figures himself. Shit, he even wrote the book on dynamics. He legitimately cares about students learning, his office is always filled with ~7 students when he has hours.

u/mtnbikeboy79 · 1 pointr/AskEngineers

Go buy Mill by David Macaulay. It will answer most if not all of your questions complete with illustrations.

u/Mikey_B · 1 pointr/AskPhysics

I'm not sure what you mean by a "field study". If you mean experiments, then yes, there are likely hundreds or thousands, as this is well-established theory that predicts numerous results in condensed matter physics; e.g. electronic properties of metals, superconductivity, superfluidity, etc.

This topic can be found in any of the standard texts on many-body physics, a subject also often referred to as condensed-matter quantum field theory. My favorites are "AGD" (i.e. the guys who invented this technique), Mahan, and Coleman (which is the most pedagogical of the three).

If you're looking for something to Google, you might want to try "finite temperature field theory" and "Matsubara formalism".

I'm not sure what your level is, but this is pretty technical stuff; I literally never heard of these concepts (other than randomly hearing the phrase "imaginary time") until taking a graduate course on many-body theory. I honestly don't know of any popular books that discuss finite temperature QFT in detail (not that I'm particularly well-versed in the popular literature, but it doesn't seem like the kind of thing that usually makes its way into the usual "multiverse/wormhole/strings/black holes" books). If you want to know more in detail, but don't know what a time evolution operator is, you'll need to learn basic nonrelativistic quantum mechanics; R. Shankar's book is a good way to learn about that, though Griffiths is a bit more accessible.

u/Project_Raiden · 1 pointr/AskPhysics

So it's alright to have such a large number of monomers? I remember reading somewhere that the longest polymer chain is only around 1,000,000 units, is this wrong or am I remembering?

Also is this book good for someone with basic chemistry background?

https://www.amazon.com/Polymer-Physics-Chemistry-M-Rubinstein/dp/019852059X

My background is in a different field (mechanical engineering) so I never really dealt with chemistry topics like this (besides in general chemistry)

u/therubikmaster · 1 pointr/Physics

Polymer Physics by Michael Rubinstein is my go to for basic polymer anything. Its chapters on networks and gels are a good introduction.

Fair warning though: Oxford's page binding methods are awful. I've seen 4 or 5 of these textbooks, 2-3 years old each, with pages falling out everywhere. But the subject matter is great!

u/dfbrown82 · 1 pointr/Physics

The best text on QM that I have is Kroemer's book.

u/DJbuttcrack · 1 pointr/engineering

i used a similar edition to this in school. It has exactly what you're looking for.
There is a program somewhere that has this information built in, and can generate your graphs, but unfortunately I don't remember the name, nor do I believe you could/would pony up the license fee.

u/GeckoAttack · 1 pointr/MechanicalEngineering

There's two textbooks that are commonly used to teach material behavior and mechanical component design (such as springs, bearings, etc). Both these textbooks are what I had to learn with.

http://www.amazon.com/Mechanical-Behavior-Materials-4th-Edition/dp/0131395068

http://www.amazon.com/Shigleys-Mechanical-Engineering-Design-McGraw-Hill/dp/0073398209

Both these textbooks are easily to obtain if yer a pirate, as well as the solution manuals. They start fairly basic, however, they quickly go quite in depth. Shigley will probably be most useful for you, but definitely flip through them both. There will be a lot of over-lap content wise. I doubt you will find any textbook material on starter springs specifically because they are a specialty spring, however, mechanics of springs still apply to them.

Have fun :p Component design can get very complicated and convoluted so try and not get frustrated if things don't make sense. Let me know if you have any more questions, and feel free to PM at anytime. I can't promise I'll have a good or correct answer for you all the time, but I can try. Component design was actually one of my least favorite classes so it's definitely not my strong suit, but I understand the majority of what is taught in Shigley's and Dowling's.